AttentionSense: Using Extended Reality to Detect the Levels of Attention in Situational
Context for ADHD Identification

Final Report
Arda Bakici - arda.bakici@nyu.edu
Muhammet Mustafa Diri - mmd9622@nyu.edu
Ray Verma - rv2340@nyu.edu

Video Demonstration of the Project:

https://drive.google.com/file/d/1xXOMBOmn WTZraDx2WRsatgZnuDgtySqC/view?usp=sharing

Github repository where project code is stored: https://github.com/ArdaBakici/CPE-Project

1. Introduction
1.1 Introduction to ADHD

ADHD (Attention-Deficit/Hyperactivity Disorder) is one of the most common mental disorders,
affecting decision making skills, long-term focus, and hyperactivity. This further leads to
difficulties in academic, professional, and social settings [1]. Diagnosis of ADHD should be
made by a qualified psychiatrist and requires a comprehensive assessment, including physical
examinations and multiple interviews. This process requires several visits to the psychiatrist,
which can be time consuming and expensive, while being inaccessible in many parts of the
world. There is a need for a quicker, cheaper, and convenient method [2]. In order to solve these

problems, we plan to apply Virtual Reality to help with ADHD Diagnosis.

While trying to focus on a task, people with ADHD showcase a high frequency of involuntary
visuomotor reflexes, as well as a greater latency while responding to visual stimuli [3]. In
addition to evaluating these metrics, responding to questions that test memory and attention

throughout the task would further increase the chances of the correct diagnosis.

https://drive.google.com/file/d/1xOMBOmn_WTZraDx2WRsatgZnuDqtySqC/view?usp=sharing
https://github.com/ArdaBakici/CPE-Project

Using these criteria, this project allows for the preliminary diagnosis of ADHD, saving the time
of both the psychiatrist and the patient. The scope of this project is defined for children and
teenagers, since symptoms of ADHD start to occur and show themselves in this period. Though
adults may also utilize the application, the results may not be conclusive and will require extra
sessions with the psychiatrist to confirm that the symptoms are present since childhood [2].
Additionally, real-world implementations of this product might be possible under the supervision

of authorities.

1.2 Project Objectives

The objective of this project is to make a VR application that can accurately identify symptoms
of ADHD in adolescents using the Oculus Quest 2 headset. The application should capture and
analyze head-tracking data and gauge user attention during the narration of a story in a
stimulus-rich environment for assessing the chances of a positive ADHD diagnosis, and

showcase these metrics for statistical evaluation through user-friendly visualizations.
This application aims to do the following:

- Reduce the time taken for diagnosis: Using the application, preliminary symptoms of
ADHD should be identified within 10 minutes, thereby reducing the time taken in a long
(1 hour) formal assessment.

- Reduce the cost of diagnosis: Due to the removal of the need of a psychiatrist, the
estimated cost of evaluation is reduced. This initial assessment will help determine if a
formal diagnosis is required, only then will a patient require a medical professional.

- Make diagnosis accessible: In parts of the world where ADHD diagnosis is
inaccessible, this preliminary assessment may be obtained easily, allowing for the

easily-obtainable identification of the disorder in a patient.

2. Project Development
2.1 Setting of the Narrative
2.1.1 Story

“The world 1s changed. I feel it in the water. I feel it in the Earth. I smell it in the air. Much that
once was is lost. For none now live who remember it. It began with the forging of the great rings.
Three were given to the Elves, immortal, wisest, and fairest of all beings. Seven to the Dwarf
lords, great miners, and craftsmen of the mountain halls. And nine, nine rings were gifted to the

race of Men — who above all else, desire power.

For within these rings was bound the strength and will to govern each race. But they were all of
them deceived, for another ring was made. In the land of Mordor, in the fires of Mount Doom,
the Dark Lord Sauron forged in secret a master ring, to control all others. And into this Ring, he

poured his cruelty, his malice, and his will to dominate all life. One Ring to rule them all.

One by one, the free lands of Middle-Earth fell to the power of the Ring. But there were some
who resisted. A last alliance of Men and Elves marched against the armies of Mordor, and on the

slopes of Mount Doom they fought for the freedom of Middle-Earth.

The victory for the alliance was near, but the power of the Ring could not be undone. Sauron
used his ring to crush all life beneath him. It was in this moment, when all hope had faded, that
Isildur, son of the King, took up his father's sword and gave an end to the malice of Sauron. The

enemy of the free peoples of Middle-Earth, was then defeated.”

2.1.2 Questions

Q1) Where was the master ring, the One Ring, forged? | Difficulty level: Easy
a. In the land of Elves

b. In the fires of Mount Doom

c. In the peaceful Shire

d. In the land of Men

Answer: b. In the fires of Mount Doom

Q2) Who led the last alliance that marched against the armies of Mordor? | Difficulty level:
Medium

a. The Dwarves

b. The Dark Lord Sauron
c. The race of Men

d. Men and Elves
Answer: d. Men and Elves

Q3) What did Isildur do when all hope had faded? | Difficulty level: Medium

a. He surrendered to Sauron

b. He took up his father's sword and defeated Sauron

c. He sought the help of the Dwarves

d. He destroyed the One Ring

Answer: b. He took up his father's sword and defeated Sauron

Q4) What sensory experiences suggest that the world is changing? | Difficulty level: Hard

a. Hearing it in the wind

b. Seeing it in the sky

c. Smelling it in the air

d. Tasting it in the food
Answer: c. Smelling it in the air

Q5) What is the ultimate goal of the One Ring mentioned? | Difficulty level: Medium
a. To bring peace and harmony to Middle-Earth

b. To grant immortality to its bearer

c. To control all other rings and dominate all life

d. To unite the races of Middle-Earth

Answer: c. To control all other rings and dominate all life

2.2 Assets
Resource Type Link
The Environment 3D Model https://open3dlab.com/project/33444/
Dark Knight (The Narrator) 3D Model %gm%gm
The Crystal Ball 3D Model Wzﬂbaﬂ-

https://open3dlab.com/project/33444/
https://sketchfab.com/3d-models/dark-knight-e2208bdc46304f6faa18728778986f35
https://sketchfab.com/3d-models/dark-knight-e2208bdc46304f6faa18728778986f35
https://sketchfab.com/3d-models/crystal-ball-6018233cc2434f8eba72f474657b65c1
https://sketchfab.com/3d-models/crystal-ball-6018233cc2434f8eba72f474657b65c1

https://sketchfab.com/3d-models/the-one-rin

The Ring 3D Model g-lord-of-the-rings-39eb401be92¢49d39520f
addSecft8d3
https://sketchfab.com/3d-models/malikeths-b

Maliketh's Black Blade 3D Model lack-blade-2a 4cb46daaa 4a
456¢
https://sketchfab.com/3d-models/the-eye-of-s

The Eye of Sauron 3D Model auron-lord-of-the-rings-fadecd2a323b47dab0
917e¢27402¢e521d
https://assetstore.unity.com/packages/3d/envi
Mountains 3D Model ronments/high-quality-free-snowy-mountain-
game-ready-233788
https://sketchfab.com/3d-models/wooden-tab
Table 3D Model le-game-ready-asset-7283ac1841504452b530
05b8103bb064
https:/github.com/jamschutz/Unity-Standard
50mm Zoom Flare and . . . Hai S Hear
Lens Flare -Assets (Original asset store package got
Flare Small
deprecated)
https://assetstore.unit ackages/2d/text
field Sk
Starfield Skybox Skybox ures-materials/sky/starfield-skybox-92717
. Iv—=

Blacksmith Sound Effect Sound https://www.youtube.com/watch?v=4LX7Z 1w

hOLpU
. IW=T-
Thunder Sound Effect Sound https://www.youtube.com/watch?v=T-BOPr7
NXME
. https: h?v=9bhov4X
Sword Falling Sound Effect Sound olio .
Soldier Footstep Sound Sound https://www.youtube.com/watch?v=41stu7d|1
Effect oun Wok
Army Marching Sound Sound https://www.youtube.com/watch?v=J4rUWx
Effect oun yL40k
. https:// .youtube. /watch?v=193fc--V
Background Music Music s://www.voutube.com/watch?v C

sal

https://sketchfab.com/3d-models/the-one-ring-lord-of-the-rings-39eb401be92c49d39520fadd5ecff8d3
https://sketchfab.com/3d-models/the-one-ring-lord-of-the-rings-39eb401be92c49d39520fadd5ecff8d3
https://sketchfab.com/3d-models/the-one-ring-lord-of-the-rings-39eb401be92c49d39520fadd5ecff8d3
https://sketchfab.com/3d-models/malikeths-black-blade-2a05bdc774cb46daaae3b04a606b456c
https://sketchfab.com/3d-models/malikeths-black-blade-2a05bdc774cb46daaae3b04a606b456c
https://sketchfab.com/3d-models/malikeths-black-blade-2a05bdc774cb46daaae3b04a606b456c
https://sketchfab.com/3d-models/the-eye-of-sauron-lord-of-the-rings-fadecd2a323b47dab09f7e27402e521d
https://sketchfab.com/3d-models/the-eye-of-sauron-lord-of-the-rings-fadecd2a323b47dab09f7e27402e521d
https://sketchfab.com/3d-models/the-eye-of-sauron-lord-of-the-rings-fadecd2a323b47dab09f7e27402e521d
https://assetstore.unity.com/packages/3d/environments/high-quality-free-snowy-mountain-game-ready-233788
https://assetstore.unity.com/packages/3d/environments/high-quality-free-snowy-mountain-game-ready-233788
https://assetstore.unity.com/packages/3d/environments/high-quality-free-snowy-mountain-game-ready-233788
https://sketchfab.com/3d-models/wooden-table-game-ready-asset-7283ac1841504452b53005b8103bb064
https://sketchfab.com/3d-models/wooden-table-game-ready-asset-7283ac1841504452b53005b8103bb064
https://sketchfab.com/3d-models/wooden-table-game-ready-asset-7283ac1841504452b53005b8103bb064
https://github.com/jamschutz/Unity-Standard-Assets
https://github.com/jamschutz/Unity-Standard-Assets
https://assetstore.unity.com/packages/2d/textures-materials/sky/starfield-skybox-92717
https://assetstore.unity.com/packages/2d/textures-materials/sky/starfield-skybox-92717
https://www.youtube.com/watch?v=4LXZlwhOLpU
https://www.youtube.com/watch?v=4LXZlwhOLpU
https://www.youtube.com/watch?v=T-BOPr7NXME
https://www.youtube.com/watch?v=T-BOPr7NXME
https://www.youtube.com/watch?v=9bhov4Xolio
https://www.youtube.com/watch?v=9bhov4Xolio
https://www.youtube.com/watch?v=41stu7d1Wok
https://www.youtube.com/watch?v=41stu7d1Wok
https://www.youtube.com/watch?v=J4rUWxyL40k
https://www.youtube.com/watch?v=J4rUWxyL40k
https://www.youtube.com/watch?v=J93fc--VsaI
https://www.youtube.com/watch?v=J93fc--VsaI

2.3 List of Animations Used

Animation Name Used Where Source
Neutral Idle Beginning Mixamo
Pointing Lightning Mixamo
Move Character Walking from Window to Custom Made
Chair
Right Turn 90 Walking from Window to Mixamo
Chair
Walking Walking from Window to Mixamo
Chair
Stand to Sit Sitting Mixamo
Talking The Narration Mixamo
Sitting The Narration Mixamo
Ring Flicker Ring Distraction Custom Made
Increase Light and Decrease Sauron Distraction Custom Made
Light
Struck In Head The Narration Mixamo
Angry Gesture The Narration Mixamo

2.4 Model Rigging and Animations

We got the 3D model for the narrator from Sketchfab. However, this model was not rigged, so
we first modified the model in Blender to make it suitable for rigging. For the narrator model, we
removed the sword and cloak, and also changed the shape of the left hand. Then we uploaded the
model to Mixamo for automatic rigging. Then we downloaded the model and the animations we

wanted to use from Mixamo and imported them into Unity.

We modified some of the animations we took from the Mixamo to suit our needs. For example,

the ‘Struck in the Head’ animation was originally for a character getting hit in the head and

bringing his hand to the impact area. We trimmed the animation, slowed it down, and disabled

some of the bone movement to create a sadness and hopelessness effect.

2.5 Offsets, Extrapolation and Override Layers

We used Unity's timeline system to sequence the animations. However, we encountered a
problem when combining them. When a Mixamo animation ended and another animation started,
the new animation started from the origin position instead of the position where the last
animation left off. This happened because the root motions of the Mixamo animation did not
apply to the rigged model. So instead we used extrapolation, track offsets and override layers to
combine the animations. In the Unity timeline system, extrapolation refers to preserving the final
state of an animation until the next animation starts. However, when the next animation starts, it
starts from the original position, not the extrapolated one. So we used track offsets to correct this.
Track offsets apply position and rotation offsets to each animation on that track, and animation
offsets do the same for a single animation. All of our animation tracks have track offsets to
account for the fact that the narrator is not at the origin. For the animation offsets, we combined
the ‘Right Turn 90’ animation and the walking animation with the rotational animation offset.
Since ‘Right Turn 90’ animation does not change the original rotation of the narrator, we apply
rotation offsets to the animations to make them start from the last rotation position where the

animation ended.

The sitting animations in Mixamo don't have the same position. So when we combined the
animations, the movement was glitchy. So we used override layers to combine these animations.
In the Unity timeline system, the animations that are on the override layer apply on top of the
animation that is on the main track. So the properties that the animation is not altering remain at
their current values, unlike normal animations, where even if the animation is not altering the
values, they return to their default values. So by combining animation extrapolation and override
layers, we can achieve animation movement on the upper body while keeping the legs and sitting

position in the same position as the last one, in this case the Stand to Sit animation.

Since we're not using the root motion from the Mixamo animations, we need to move the
narrator with another animation while the walk animation plays. For this we have the
MoveCharacter animation, which changes the character's z-coordinate from 0 to 3.68 over the

span of 5.5 seconds.

We also have other animations such as Ring Flicker, Increase Light, and Decrease Light, which

alter light brightness and lens flare intensity properties over several seconds.

2.6 Animated Sequence

The simulation is set in a wizard's study room. The user sits in a chair in front of the narrator.
The simulation first greets the user with a menu with 2 options, "Start Simulation" and "Exit
Simulation". When the user presses Start Simulation, the menu is disabled and the timeline

begins to play.

Welcome to the AttentionSense
! Warning !
This simulation contains flashing lights.

Please try to keep your attention on the narrator throughout
the story. When you feel ready, press the "Start Simulation”
button to begin the simulation.

Exit Simulation

Start Simulation

Figure 1. Main Menu

The simulation starts with the narrator looking out of the window in idle animation. The
background music also starts to play. The user has about 10 seconds to look around, analyze the

room and satisfy their curiosity. Then the simulation begins with the first event.

trial2_narration

Figure 2. Timeline for the Start and the Lightning Event

2.6.1 Lightning

Figure 3. The Narrator casting the lightning flash

To get the user's full attention, the simulation begins with the narrator casting a lightning flash.
First, the narrator switches from a Natural Idle animation to Pointing animation, and at the end of
the animation, the lightning event is triggered. The lightning effect is achieved by quickly
enabling and disabling a directional light with an intensity of 100 and a lens flare. There is a
point light with a lens flare component at the position just in front of the narrator's fingertip. This
point light is a child of the directional light, so it flickers with the directional light, making the
narrator’s fingertip glow. The sound of thunder is played at the same time as the lightning. The
purpose of the lightning is to attract the user's attention, to create mystery and curiosity about the

story, and to signal to the user that the simulation has begun.

eline
US|

Figure 4. Timeline for Walking from Window to Chair and Sitting Animations

2.6.2 Walking from Window to Chair and Sitting

Figure 5. The Narrator walking towards the chair

From now on, the narrator begins to tell the story to the player. Meanwhile, he starts turning
away from the window and walking towards the chair. This is achieved by combining the Right
Turn 90 and Walking animations. There are also footstep sound effects in sync with the narrator's
footsteps. When the narrator reaches the chair, another Right Turn 90 animation plays and then

the narrator sits down.

2.6.3 The Narration

Figure 6. Timeline for story narration

When the narrator finishes sitting in the chair, he continues to tell the story. At this point, we start
recording the user's gaze data into a CSV file, which will be explained in section 2.10. The
narrator remains in the chair for the rest of the simulation, alternating between different
animations. We also play different sound effects throughout the simulation, such as ring forging
sounds to army marching sounds. Both are done to keep the user's attention on the story. While
the narrator is telling the story, several distractions take place to test the user's reaction time to

find the likelihood of ADHD based on the study by Stokes et. al. [4].

Figure 7. Timeline for story narration

2.6.4 Distractions

In total, we use 4 distractions in the simulation. The first distraction occurs when the narrator
mentions the ring while the blacksmith sound effect is playing. In this distraction, the ring glows

using the lens flare.

Figure 8. Ring Distraction

Another distraction used is the sword distraction. This distraction occurs while the narrator is
talking about the rings gifted to the race of men, about 68 seconds into the simulation. The sword
distraction is the only distraction that uses auditory stimulus. When the sword hits the ground, it

plays the sword falling sound effect. This is done with the script PlaySoundOnHit.cs.

Figure 9. Sword Distraction

The final type of distraction is the Eye of Sauron distraction. Throughout the simulation, the Eye

of Sauron was in the background. However, since there is no ambient light, it is not visible.

Figure 10. Timeline for Sauron Distraction

The Eye of Sauron distraction begins when the narrator mentions Dark Lord Sauron forging the
master ring. First, the brightness of the point light shining on the Eye of Sauron is increased.

About 7 seconds later, the Lens Flayer is introduced.

Figure 11. The Eye of Sauron Distraction

This lens flayer is the main distraction and is visible even when the Eye of Sauron is out of sight.

This distraction is the longest distraction and gives the user more time to react to it.

2.6.6 Events

Each distraction has an Event game object to detect if the player is looking at that event. This
game object is basically a sphere with a capsule collider and its mesh renderer disabled so that

the user cannot see it in the simulation.

Figure 12. Event object for Ring Distraction

Attached to the CenterEyeAnchor is a cube object with a box collider and without a mesh
renderer. When the user turns their head, this cube object turns with them. When this cube object
collides with another collider, Unity calls the onTriggerEnter function (explained 2.10) and we
check if the colliding object is an ‘Event’ object. Each object has an Event.cs script that holds the
name of the event and the time the event was triggered. By subtracting the current time from the
time the event was triggered, we can find the amount of time it took for the user to react. Both
the events and the cube attached to the camera have isTrigger enabled for their colliders. So that

they go through other colliders and don't provide physical collisions.

Figure 13. Box Collider Attached to the CenterEyeAnchor

2.6.7 Signals

To synchronize the animations with the distractions and events, we use signals. When a certain
point in time is reached on the Timeline, it emits a certain signal. In Figure 14, signals are visible

as white bookmark icons.

H Timeline
MO > Mo] 5825 -
i 1» s ¥

Figure 15. Signal for Ring Event

The Narrator's game object has a Signal Receiver component that defines what each signal will
do. When a signal is emitted from the timeline, Unity calls this component and performs the

corresponding action.

Figure 16. Signal Receiver Component

For example, for the Lightning event, we use the SendLightning and RemoveLightning signals.
We send these signals one after the other in small time intervals to enable and disable the
Directional Light game object. For distractions, the signals are used to enable the Event object

for the corresponding distraction.

2.7 Quiz

After the narration ends, we stop recording the user's gaze and enable the Quiz canvas. The Quiz
canvas is a ray-interactable menu having a text component and 4 buttons. We update the text and
buttons on the Quiz canvas using the QA.cs script (explained later section 2.10) and display

whether the user’s answer is correct or incorrect.

Figure 17. Quiz Canvas

2.8 Results Scene

When the quiz is finished, the simulation directs the user to the Results scene. In this scene, we
have the Gaze Heatmap, the Minimum Response Time Graph, and the ADHD Probability data

shown to the user. There are also Restart Simulation and Exit Simulation buttons.

'\ You are here

ADHD Probability. 18.8%

Figure 18. Results Scene

2.9 Narrator’s Voice

Firstly, a clear narration with a decent audio recorder has been done. Then, Adobe Premiere Pro
is utilized for voice effects. After an experimental sequence with many voice effects, the
following steps are pursued: pitch and depth, modulation and distortion, ambiance and texture,
mixing and finalization. Since Unity provides stereo and distant sound effects, this issue has been
omitted from our consideration. For the pitch and depth, pitch shifter effect is used. Semi-tones
level is chosen as -4 and cents level is chosen as -31, as this gives the best tone for our narrator.
Parametric equalizer effect is also used while high pass and low pass filters help to decrease the
spectrum of the sound to ensure the smoothness and the mysteriousness of the narrator voice at
the same time and preserving the balance. Additionally, this prevents the unnatural “cracks” that

happened after the previous (pitch shifter) effect.

® @ @ Clip Fx Editor - Pitch Shifter: Audio 1, New York University Abu Dhabi 3.m4a, Ef...

(| Presets: (Default) v~

Pitch Transpose

Semi-tones:
-100

Cents:

Ratio: 00,7795

Precision Pitch Settings

Low Precision Splicing Frequency:
Medium Precision Overlapping:

High Precision Use appropriate default settings

In: 1| Out: 1

Figure 19. Pitch shifter parameters that are used to accommodate a certain tone to the narrator.

o000 Clip Fx Editor - Parametric Equalizer: Audio 1, New York University Abu Dhabi 3.m4a, Effect 5, 00:00:00:00
()| Presets: (Default) v

Gain

Frequency 120 Hz 200 Hz 800 Hz 3200Hz 12800Hz 17154Hz 6583 Hz

Gain 24dB/Oc 0dB 0dB 0dB 0dB -02dB 24dB/Oct
Q/ Width 2 2 2 2 =

Band 3 4 H

Constant: Width Ultra-Quiet Range: 30dB 96 dB

In:1|Out: 1

Figure 20. Parametric equalizer effect with high (HP) and low-pass (LP) filters utilized.

2.10 Data Processing and Code

Given below are the most significant C# Scripts that are used in the project, with some of their

prominent functions and their description.
GazeClassifier.cs: Calculates and stores the angle at which the user’s gaze is in the scene.

gazeAngles(): This function calculates the angle of the camera with respect to the z-axis. It first
gets the forward direction of the camera. Then, it calculates the angles between the z-axis and the
forward vector of the camera in the x and y directions. These angles are adjusted based on the
scene and the sign of the gaze direction. The angles are then saved to a file using the

saveGazeData() function.

saveGazeData(float x, float y): This function saves the gaze data to a file. It creates a string with
the x and y values separated by a comma and a newline character. It then opens a StreamWriter
to the file specified by gazefile, writes the gaze data string to the file, and closes the

StreamWriter.

DisTimeClassifier.cs: Calculates and stores the response time of a user to visual stimuli.

‘OnTriggerEnter(Collider collision)’: This is a Unity3D method that is called when the object
this script is attached to enters a trigger collider. If the collided object has the tag "Event", it
calculates the response time by subtracting the time the event was created (stored in the "Event’
component of the collided object) from the current time. The collided object (the event) is then
deactivated. Finally, it calls the ‘saveResponseData(float resTime, string name)’ method to save

the response time and event name to a file, similar to that in GazeClassifier.cs.

QA.cs: Implements the quiz; it loads and changes the quiz questions, and stores the user

response.

‘parseQuestions()’: This method is used to parse the questions from a hardcoded string array.

Each line is split into its components and used to create a new Question object.

"Question” Class: This is a helper class that represents a single question in the quiz. It has a string
for the question text, an array of strings for the options, an int for the correct answer (represented

as an index into the options array), and a float for the difficulty of the question.

‘displayQuestion(Question q)": This method updates the Ul to display the given question and its

options.

‘answer(int answer)": This method is called when the player answers a question. It checks if the

answer is correct, updates the result text, saves the answer data, and moves to the next question.

‘changeQuestion()": This method moves to the next question if there are any left, or loads the

"Results" scene if there are no more questions.

DataProcessing.cs: parses, processes and calculates ADHD probability while displaying

heatmap and response graph.
‘processData()’: Controls the execution of all calculations and display functions:

It first parses the gaze data using parseGazeData(), processes it with processGaze(gazeData),
and calculates statistics with calcDataStats(classifications, "Gaze"). It then creates a heatmap
using createHeatMap(gazeData) and draws it with drawHeatMap(heatmap). Similarly, it
processes the Response and Quiz data. It also draws a reaction time panel with
drawReactionTime(responseData). 1t then calculates the wuser’s total score using
calcTotalScore(gazeStats, responseStats, quizStats). Finally, it displays the results using

displayResults(gazeStats, responseStats, quizStats, totalScore).

‘parseGazeData()’, parseResponseData(), ‘parseQuizData()’: These functions open the files for
the gaze, response times and quiz answers, and load their data into an array which is

subsequently returned.

‘processGazeData(float[][] data)’, ‘processResponseData()’, 'processQuizData()’: lterates
through each item in the respective array and calls the score calculation function. Stores the

scores for each metric in an array and returns it.

‘getGazeScore(float x, float y)’: classifies the gaze point to a specific focus region (gazeBox),

and returns the score associated with that box.

‘getResponseScore(float[] response)’: calculates the score depending on the response time for a

. . . . 1 n minEventTime,
specific visual stimuli based on the formula: Response Score =—* ¥ A [——0m",
i=1 i

where n is the number of events, minEventTime is the minimum possible response time for a

specific stimulus, and userTime is the actual response time of the user.

‘getAnswerScore(float correct, float diff)’: Calculates the score for a specific quiz result based on
the answer and the difficulty of the question using the formula:

QuizScore = correct * correctPts * dif f, where correct is a boolean showing if the user
answer is correct, correctPts is the number of points allotted to a correct answer, diff is the

difficulty of the question from 0 to 1.

‘calcDataStats(float[] data, string type)’: Calculates the average, standard deviation, sum of the

scores and number of data points for a specific scores array, and returns these values.

‘calcTotalScore(float[] gazeStats, float[] responseStats, float[] quizStats)’: calculates the total

score by summing the normalized scores for each metric and multiplying them by their weights.

‘createHeatMap(float[][] data) : This function creates a heatmap from the provided gaze data. It
first calculates the maximum x and y values of the heatmap based on the maximum map angles
and the distance to the plane. It then initializes the heatmap and iterates over the gaze data. For
each gaze point, it checks if the point is within the heatmap boundaries. If it is, it calculates the x

and y location of the gaze point on the heatmap, converts these to indices, and updates the

heatmap values at these indices using ‘updateMapValues()'. Finally, it normalizes the heatmap

using ‘normalizeMap()" and returns it.

‘updateMapValues(float[,] map, float x, float y)': This function updates the heatmap values
around a given gaze point. It first calculates the bounds of the brush stroke based on the brush
size. It then iterates over the heatmap values within these bounds and updates each value based
on its distance from the gaze point. The closer the heatmap point is to the gaze point, the larger

the value added to it.

‘drawHeatMap(float[,] map): Draws the heat map onto a Unity texture. first creates a
‘Gradient’ object, which is used to map heatmap values to colors. It then iterates over the
heatmap values and adds the corresponding Color value into a 2D array. It converts the 2D color
array to a 1D array and sets the pixels of the texture to these colors. It then applies this texture to

a plane in the scene.

‘drawReactionTime(float[][] data)’: Displays the minimum reaction time on a normal
distribution graph. It first calculates the minimum reaction time from the data. It then scales this
time to fit the range of the graph. It calculates the position on the graph that this scaled time
corresponds to. Finally, it moves the reaction showcase bar to this position to represent the

statistical position of the user.

‘calcADHDProb(float score)’: Uses a predefined threshold to calculate the probability that the
user does not have adhd. If the score is less than the threshold, the probability is calculated as
half of the ratio of the score to the threshold. This will result in a probability between 0 and 0.5.
If the score is equal to or greater than the threshold, the probability is calculated as 0.5 plus half
of the ratio of the difference between the score and the threshold to the difference between 1 and
the threshold. The probability that the user does have ADHD is calculated by subtracting the

returned value from 1.

3. Results and Evaluation

The simulation was thoroughly tested across multiple test subjects, and the results were used to

tune the parameters for data processing. In addition, we tested the following extreme cases:

Extreme Case Expected Result

Should achieve the max gaze score possible
User looks at the narrator throughout the
)) and heatmap should look red at the center
simulation.
point

Should achieve 0 gaze score and heatmap
User never looks at the narrator
should be blue at the center

User looks at all the distractions the User should get the maximum possible
moment they get initiated responseTime score of 1

User never looks at the distractions Should get minimum score of 0

User answers all quiz questions Correctly Should achieve the quiz score of 1

User answers all quiz questions ‘ ‘
Should achieve the quiz score of 0
Incorrectly

Here are some of the results that were achieved after completing the simulation:

Response Time Gaze Heat Map Response Time

ADHD Probability: 12.4% ADHD Probability: 74.9%

Fig. 21 Test with an average user Fig. 22 Test with a user with ADHD

Gaze Heat VET Response Time

Gaze Score: 1.0
ResponseTime Score: 1.0
Quiz Score: 1.0
Total Score: 1.0

ADHD Probability: 0%

Fig. 23: Extreme Case Test with Maximum scores

Throughout the tests we have run we found out that lightning served as a great attention-getter
and signal that the simulation has started. Also none of the user’s faced problems with the user
interface and found the simulation to be easy-to-use. The distractions were generally noticed by
the users, however, some users that had not been paying attention to the narrator at the time
missed the first Ring event, which served as a great way to measure user’s attention to the
narrator. One limitation we encountered with the simulation is that people sometimes reacted to
distractions by moving their eyes, not their heads. Because we are unable to track their eye gaze,

this caused the simulation to incorrectly assume that they missed some of the distractions.

3.2 Problems Encountered

- Lens Flare only working for one eye

The lens flare that we are using to alert players to events wasn't working properly on the headset
for the first time. The flare was visible on the left eye, but not on the right. After searching the
internet we couldn't find a proper solution until we tried adding post processing to the camera
and it did the same thing as the lens flare, the left eye was fine but the right eye just showed
white. While searching for a solution to this problem, we found that changing the Oculus
rendering type from multipass to multiview solved both problems.

- Root motions from Mixamo animations did not apply to the rig

When we tried to sequence the animations from the Mixamo, the root motions on these
animations did not apply to our 3D model. Basically, the rig's bone positions did not change with
the animation, which caused the next animation to play from the bone's original position instead
of the position from which the last animation left. We solved this problem with animation
extrapolation, override layers and track offsets.

- Data file couldn't be read on Oculus which caused all code to crash

The first time we tried to save and retrieve data from a file in Oculus, our code crashed. Since we
didn't have access to the debug console on Oculus, it took us some time to figure out what was
going wrong. Then we realized that we couldn't write to the current application path in Oculus
and instead had to use Application.permanentPath to read and write files.

- Rayecasting not working on Quest 2

We originally planned to use raycasting to detect if the user is looking at an event. However, this
didn't work on the VR headset, so instead we connected a rectangular box collider to the
CenterEyeCameraAnchor, disabled the mesh renderer, and checked the collisions to see if the
user was looking at the event.

- No eye gaze detection in Quest 2

Since we don't have access to eye gaze data on Quest 2, we instead increased the tolerance in our

algorithm to account for the time difference between eye movement and head movement. We did

1 : . . minEventTime minEventTime
this by changing our response score calculation function from - to A / _ .
userTime userTime

1

x

. 1 .
The reason we use the square root is that we have found that >y decreases very quickly and

scales much better. The graph in Figure 24 shows the difference between these two functions.

0.8

0.6

0.2

1

\Jx

Figure 24. Comparison between % (Blue) and (Red) for minimum time value of 0.1

4. Conclusion and Future Work

This project serves as a framework for a virtual reality based ADHD diagnosis application. This
software accelerates ADHD diagnosis, thereby reducing costs and increasing the accessibility of
healthcare. The project assesses the user’s attention throughout a simulation of a stimulus rich
environment during a story narration and quiz. It uses three metrics for this: user gaze, stimulus
response time, and quiz results. The data from all of these metrics are processed to compute the
probability of a positive ADHD diagnosis with respect to predetermined thresholds. It also
visualizes the given data through graphs and heatmaps, allowing a diagnosing psychiatrist to
easily interpret and evaluate the user’s condition. Though the software showcases fairly valid
results, many further improvements can be made to increase its accuracy and improve user

experience:

Eye Gaze Implementation: Due to the lack of eye tracking features in the Quest 2, the gaze
tracking feature was not implementable in our project. Instead head tracking was implemented as
a close alternative. In future versions, using headsets like the Quest Pro, the user’s eye
movements will be tracked, thereby giving a more accurate estimate of their attention and

response times. This will lead to a more accurate assessment of the final result.

Further Testing: Due to time constraints, the project could not be tested rigorously with a large
sample group. Being a biomedical tool, this application requires an immense amount of
examination with both types of users - one’s that do and do not have ADHD. This experimental
data will allow for the fine-tuning of the data-processing parameters and thresholds, thereby

allowing for a greater accuracy of the probability output.

Improved Graphics Implementation: The project currently uses SRP pipeline to render the scene,
which displays the graphics at a lower quality than those made through the HDRP method. By
using higher-end headsets and better texture quality, a more realistic scene can be made, thereby

simulating a more lifelike environment for the user.

Story Variation: Due to the subjectivity of user preferences, they can be tested on a range of
stories to get a better understanding of their overall attention level. Through this, biases
regarding interest for/against the specific story are removed, resulting in a precise and impartial

measurement of data.

5. Reflection on Learning

Throughout this project a diverse range of skills were developed ranging from logical
programming to creative audio processing. The following list briefly describes the tools used and

the skills developed during the creation of this software.

e (C# Programming Language
o File Management: Used in the storage and retrieval of user data
o Data Processing: Learned to programmatically analyze raw data, and
compute/extract the required information.
o Heat Maps: Utilized 2D arrays to store and visualize data in an intuitive format
o Using Unity Game Engine for VR Games
o Meta XR Framework
o Timeline System: Used for sequencing the animations, events, and sounds
o Animation System: Used for animating the narrator and events in the simulation
o Collision and Trigger System: Used during the implementation of user response
times to visual stimuli.
o Scene and Texture System: Utilized during the visualization of processed data,
especially the pixel-by-pixel presentation of the heatmap.
e Blender
o 3D Model: Used for modifying 3D models for animating and creating objects to
use in the scene
o Rigging: Used for animating the narrator
e Adobe Premiere Pro
o Audio Processing: Used extensively to record, edit and polish the story and

corresponding sound effects.

This project enhanced our problem solving skills while increasing our knowledge regarding the
Unity and Oculus frameworks. We learned to think algorithmically while implementing a
modular way of ideation and development. It made us better communicators, while enhancing

the research skills that were applied during the brainstorming and implementation process.

6. References

[1] What is ADHD?. Psychiatry.org - What is ADHD? (n.d.).

https://www.psychiatry.org/patients- families/adhd/what-is-adhd

[2] Diagnosis: attention deficit hyperactivity disorder (ADHD). NHS. (n.d.). NHS choices.

https://www.nhs.uk/conditions/attention-deficit-hyperactivity-disorder-adhd/diagnosis/

[3] Nigg JT, Butler KM, Huang-Pollock CL, Henderson JM. Inhibitory processes in adults with
persistent childhood onset ADHD. J Consult Clin Psychol. 2002 Feb;70(1):153-7. doi:

10.1037//0022-006x.70.1.153. PMID: 11860041.

[4] Stokes, J. D., Rizzo, A., Geng, J. J., & Schweitzer, J. B. Measuring attentional distraction in

children with ADHD using virtual reality technology with eye-tracking Frontiers.

https://www.frontiersin.org/articles/10.3389/frvir.2022.855895/full

[5] Kleberg JL, Frick MA, Brocki KC. Eye-movement indices of arousal predict ADHD and
comorbid externalizing symptoms over a 2-year period. Sci Rep. 23;13(1):4767. doi:

10.1038/s41598-023-31697-3. PMID: 36959373; PMCID: PMC10036637.

[6] Lee, D.Y., Shin, Y., Park, R.W. et al. Use of eye tracking to improve the identification of
attention-deficit/hyperactivity disorder in children. Sci Rep 13, 14469 (2023).

https://doi.org/10.1038/s41598-023-41654-9

https://www.nhs.uk/conditions/attention-deficit-hyperactivity-disorder-adhd/diagnosis/
https://www.frontiersin.org/articles/10.3389/frvir.2022.855895/full
https://doi.org/10.1038/s41598-023-41654-9

	1. Introduction
	2. Project Development
	2.1 Setting of the Narrative
	2.1.1 Story
	
	
	3. Results and Evaluation
	
	4. Conclusion and Future Work
	
	5. Reflection on Learning

